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1 Problem Formulation

We have multiple sensors in a constellation of sensors each represented by a feature vector (X;,Y;, o, 55).
There are multiple target points T; that these sensors can sense. The target point is represented by
a high dimensional feature vector, but for the current discussion we limit it to two dimensions that
we refer to as (x;,y;). Our goal is to find the best values of (a;,3;) so that the estimated value
(Z3,Ys) is as close to the true value for each target T;.

The sensors are independent of each other when they sense the targets T;. Nevertheless, multiple
sensors can sense the same target and when they do, we would like the target feature vector to
be the same across all the sensors. In addition we have a data collection phase during which each
sensor is capable of recording the true value of the feature vector (z;,y;) in addition to a random
variable described later in (1).

2 Conditions and constraints
e We have function D;; = f ((x;, i) ,(X;,Y;)) where D; ; € R.

e Then we have a relationship of the form

Tijks Oiji = ajlog (Dij) + B (1)

Note how the value of D; ; is independent of the index k and is also independent of 6;;;,. Here
0;jx is an angular direction detected by the j* sensor for the i'" target T;, and 7;;; is a random
sensed value. This means for different values of r; ; . we could have the same value of D; ; according
to (1).

e Further the constants o;jand 3; are dependent only on the sensors. We need to find the optimal
value of a; and and j3; for each of the j sensors such that for every r;;;, the calculated value
for (Xijx,Yijr) = (25,9:) for the target point T; is as close as possible to the true feature
vector (x;,y;). This means we have a constraint optimization function of the form
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where (X, Yiji) is a calculated feature vector for T; determined using (1). Note that (1) does
not have explicit reference to (Xjjx, Yi;jx) but we can determine D;;. The sensors are directional,
in the sense they can determine the direction for D;; defined by 0;;y.

e We define the function f ((z,y:),(Xijk, Yijx)) to be the L2 norm. Hence we can find the
actual (X k,Yix) from (1) by using the relationship



Tijk —Bj Tijk—Bj

Xijp=X;+10 = cos (ka) Yiig =Y; +10 i sin (Qij;.c) (3)
Hence the constraint function (2) is dependent on (1) through the relationship (3).

e Further, we have additional constraints on the range of values for «;, 3;, given by

a; < B,
B; < Bg
aj > Ag
B; > Ag
(o +57) <C

3 Solving using Gradient Descent

Because we have constraints on the estimated variables, we assimilate these constraints into the
main objective function using Lagrangean relaxation. As a result we have lagrangean multipliers
referred to by the symbol A. The multipliers are given by the relationship (4)
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The partial derivative of the Lagrangean with respect to a; and §; is as below
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Because we wish to minimize the error represented by (2), we equate the partial derivatives to
zero as below and then solve them.
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The relationship between the different different values of the lagrangean multipliers in terms of
the differentails is given as below and the terms P and @ are the partial derivative components
with respect to a; and 5; without the lagrangean multipliers:
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We cannot derive a closed form solution by substituting (7)-(11) in (5) and (6). Hence we used
gradient descent to find an iterative solution to the system of equations. The update function for
oy, B; is given by
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By substituting the updated values of ¢, 3; in (7)-(11) we get the updated values of the la-
grangean multipliers for the next iteration of gradient descent.
4 Implementation

Gradient descent iterations implemented in Python without using any external optimization pack-
ages.



