
Using the Lambda Architecture on a Big
Data Platform to Improve Mobile

Campaign Management

BIG
DATA

Author: Sandesh Deshmane

Executive Summary

Growing data volumes and real time decision
making requirements are making traditionally
used processing systems redundant.
Increasingly, businesses are leveraging Big
Data technologies for enabling high impact
decision making in real time.

In the case of mobile campaign management,
high data volumes and velocities pose a data
processing challenge. The lack of real time
views on campaign performance often leads to
over or under delivering campaigns. Often,
campaigns are run for shorter durations and
over delivering entails heavy losses in terms of
revenues and missed opportunities.

This paper talks about the Lambda
architecture- a combination of batch and real
time processing capabilities. And how this was
used as a solution on a big data platform, to
enable real time decision making for mobile ad
campaign management.

© Talentica Software (I) Pvt Ltd. 2015 2

Background

Traditionally, batch jobs were used to update dashboards

meant for monitoring or decision making purposes. In a

batch processing system, data is processed in batches set

at specified intervals, and then made available to users.

To handle the continuously growing volumes of data, batch

processing technologies have evolved from Java based

ones to Hadoop based big data ones. However, since

processing is done in batches, there are large time lags

between the data arriving onto the platform and being

displayed to users. Also, if the velocity of data generation

is high, each batch takes longer to process, leading to

further delays in generating reports. While this issue is

easily overcome by adding more servers to the system, it is

a costly thing to do.

Large time ranges have considerable impact on business

decisions, often leading to heavy revenue losses and

missed opportunities. Real time data processing tools help

in overcoming this issue. Real time processing systems

continuously process data as it arrives. Whenever data has

to be viewed, reports are generated based on the most

recent data. This makes monitoring and decision making

more precise than in the case of a batch processing

system.

In a highly dynamic

business world, the

inability to take strategic

decisions almost

instantly leads to heavy

losses in terms of

revenues and business

opportunities. In turn,

making real time

processing capabilities

crucial to have.

© Talentica Software (I) Pvt Ltd. 2015 3

© Talentica Software (I) Pvt Ltd. 2015

The issue with real time processing, is that factors such as

delayed events, code changes, or system failures, call for

re-processing the time ranges and then re-computing the

metrics. Making it a time and resource consuming affair.

Citing the example we have used for this paper.

Advertising campaigns have become commonplace on the

mobile platform. These campaigns are usually run for

short durations. For campaigns to be successful, their

perfomance needs to be constantly monitored and

priorities adjusted accordingly.

If campaigns under deliver, advertisers lose visibility.

However, if they over deliver, platforms lose revenue.

Reprioritizing campaign objectives based on historic data

often leads to under or over delivering campaigns. To

ensure this does not happen real time reporting is

essential.

4

In our case batch jobs were being used for processing

campaign data. With over 500 GB data being generated

per hour at almost 200k messages/second, campaign

priorities took a while to calculate. In most cases, the

campaigns would over deliver in terms of the number of

impressions, leading to considerable losses in terms of

revenue.

To minimize the revenue loss, campaign performance

reports needed to be generated in real time.

© Talentica Software (I) Pvt Ltd. 2015 5

Dealing with Volume and Velocity

In our case, the volume of data generated and the speed

at which data was generated were considerably high. To

ensure success of the campaigns, data processing needed

to factor in both the volume and velocity aspects of the

data.

Using a Big Data based batch processing system, large

data sets could be easily handled. Depending on the batch

intervals, large volumes of data could be easily processed,

along with scope for managing incremental increases.

However, at the high velocity this data was being

generated, the time taken for processing each batch

would increase, adding to the delay in generating reports.

A workaround would entail an expensive addition of

servers.

Handling high velocity data required a real-time

processing tool that compensated for the high-latency of

batch systems. However, using such a system alone would

mean risking time consuming and costly reprocessing

whenever delayed events, code changes, or system

failures occurred.

Since, neither batch nor real time systems alone, could

handle the volume and velocity conundrum. We looked at

a solution where both the systems worked in tandem. The

batch component would store the master data set and

batch process all the metrics. The real time component

would continuously process recent data and integrate the

old data into the batch.

The lambda

architecture is an

malgamation of batch

and real time processing.

It provides a solution

where real time decision

making is enabled for

critical areas and cost

efficiency is maintained

by not making the entire

processing happen in

real time.

© Talentica Software (I) Pvt Ltd. 2015 6

Using a combination of batch and real time processing

systems in parallel is an approach which businesses are

increasingly exploring now. While the batch layer ensures

scalability and fault resilience for the system, the real time

layer takes care of processing metrics required on the go.

Nathan Marz coined the term Lambda Architecture (LA) to

describe a generic, scalable and fault-tolerant data

processing architecture.

Lambda Architecture

Data that enters the system is dispatched to the batch and

the speed layers for simultaneous processing.

The batch layer serves two functions:

The serving layer indexes the batch views so that they can

be queried in a low-latency and ad-hoc manner.

The speed layer compensates for the high latency of

updates to the serving layer and deals only with recent data.

Any incoming query can be answered by merging the results

from both batch and real-time views.

Managing the master dataset (an immutable,

append-only set of raw data)

Pre-computing the batch views.

© Talentica Software (I) Pvt Ltd. 2015 7

Solution

Overview
To process data at almost 200k messages / second, high

velocity receivers and storage systems were required for

processing and storing incoming records. Kafka proved to

be the best choice as a message queue. Apache Storm

Stream and Redshift seemed best suited to manage real

time data and data storage respectively. For processing

historic data and generating adhoc reports (service layer),

batch-processing services like Amazon Elastic MapReduce,

PIG and Apache Spark were used.

The Architecture
The figure below provides an overview of how the lambda

architecture looks like.

MySQL

Amazon
Redshift

Amazon S3

Apache Storm

Amazon S3
EMR

D
at

a

R
ea

l T
im

e
B

at
ch

 V
ie

w

Se
rv

in
g

la
ye

r

Q
u

er
y

Speed Layer

Batch Layer

Master
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

© Talentica Software (I) Pvt Ltd. 2015 8

Batch layer

The Kafka messaging queue passes the log messages to

Amazon S3 where they are stored as the master dataset.

These logs are then batch processed on Amazon Elastic

MapReduce using PIG scripts, MapReduce and Apache

Spark. The metrics derived from this processing are loaded

into the Amazon Redshift Data warehouse and are made

available as key value stores for to visualization / reporting

tools such as tableau.

Speed Layer

In order to generate real time reports, the Kafka messaging

queue passes the logs to the Apache Storm Cluster via a

Storm Topology. The storm topology reads the events from

the Kafka Queue with the help of Kafka Spouts. Stream

joins, data aggregations, and transformations are carried

out using Storm bolts. The metrics derived are calculated on

the cluster and stored in MySQL. A majority of the issues

related to concurrent updates are managed on the speed

layer where regular purging makes the data sizes smaller. In

turn, helping to reduce the processing complexity.

Components

Message Queue

Kafka

Batch Layer

Amazon S3, EMR,

MapReduce, Apache

Spark, Amazon Redshift

Speed Layer

Apache Storm, MySQL

Serving Layer

Views get created separately on batch as well as real time

data. The serving layer is responsible for merging the views

created on batch and real time layers. The merged views are

then used for generating reports. Real time views are

transient in nature show only the most recent data, older

data is discarded once it passes through the serving layer

and is stored progressively in the batch layer.

Error Recovery
The lambda architecture enables error rectification by

allowing the views to be re-computed. If this seems time

consuming in a particular case, we can simply revert to the

previous, non-corrupted version of the data. Doing this was

possible since the data in the master dataset was immutable

- could not be altered after being created. The data in the

master dataset does not get updated and is only appended

to (time-based ordering). This makes for a Human Fault

Tolerant System where bad data can be completely

removed and re-computation can be easily done.

9© Talentica Software (I) Pvt Ltd. 2015

In the case of mobile campaign management, the

Lambda architecture works as a cost effective and

scalable solution. The speed layer uses most recent data

for real time processing. The batch layer maintains the

master dataset for non real time processing. This

framework helps churn out real time output where

needed while ensuring that too much data does not

remain in the real time processing system at any given

point of time.

Conclusion

Advantages

• Input data retained

 without any changes

• Data can be reprocessed

 to re-derive an output

• Obeys the CAP theorem

Disadvantages

• Maintaining a single code

to produces the same

result in two complex

distributed systems

• Heavy operational load

of running and debugging

two systems

• Latencies caused during

merging data at theserving

layer

© Talentica Software (I) Pvt Ltd. 2015 10

© Talentica Software (I) Pvt Ltd. 2015 11

Office No. 501, Amar Megaplex
Baner, Pune 411045

Tel: +91 20 4660 4000 | Fax: +91 20 4075 6699

www.talentica.com

Talentica Software is an innovative outsourced

product development company that helps startups

build their own products. We help technology

companies transform their ideas into successful

products by partnering in their roadmap from

pre-funded startups to a profitable acquisition.

We have successfully built core intellectual property

for more than 60 customers so far. We have the

deep technological expertise, proven track record

and unique methodology to build products

successfully. Our customers include some of the

most innovative product companies across USA,

Europe and India.

About Talentica

